DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION

Charles W. Forsberg
Oak Ridge National Laboratory*
P.O. Box 2008
Oak Ridge, Tennessee 37831-6179
Tel: (865) 574-6783
Fax: (865) 574-9512
Email: forsbergcw@ornl.gov

Manuscript Date: July 31, 2000
File Name: DuDispose.Spect00.article

Article Prepared For
Spectrum 2000
International Conference on Nuclear and Hazardous Waste Management
American Nuclear Society
Chattanooga, Tennessee
September 24–28, 2000

Paper Number: 191
Presentation Date: September 28, 2000

*Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAAGE FILL:
A DISPOSAL OPTION

Charles W. Forsberg
Oak Ridge National Laboratory
P.O. Box 2008; Oak Ridge, Tennessee 37831-6179
Tel: (865) 574-6783; Fax: (865) 574-9512
Email: forsbergcw@ornl.gov

ABSTRACT

The use of depleted uranium (DU) dioxide (DUO₂) particles is being investigated for use in repository waste packages (WPs) containing light-water reactor spent nuclear fuel (SNF). The DUO₂ may be incorporated into the WP (1) as a particulate fill of all void spaces including the SNF coolant channels and (2) as a component of the WP structure. The use of DUO₂ may (1) reduce repository criticality concerns, (2) reduce radionuclide release rates from the repository, and (3) dispose of excess DU. The quantities of DUO₂ that could be used in the WPs are defined for alternative WP designs. The alternatives use 2.5 to 8 t of DU per ton of SNF on a uranium-metal basis. If the only change to the WP is filling all the voids inside the WP with DUO₂ particulates, about 3.5 t of DU are used per ton of SNF. This beneficial use of DU could potentially use the entire inventory of DU.

DESCRIPTION OF CONCEPT

The waste package (WP) with depleted uranium (DU) dioxide (DUO₂) fill would be similar in design to that of the proposed Yucca Mountain (YM) repository WP. The WP would be first filled with spent nuclear fuel (SNF) and then filled with DUO₂ particles ranging in size from 0.5 to 1 mm. The particles fill void spaces in the WP and the coolant channels within each SNF assembly (Fig. 1). Particle size is chosen to allow efficient filling of the coolant channels. The proposed Canadian SNF WP uses a particulate fill material (but not DUO₂). Canadian large-scale experiments using dummy SNF assemblies and full-scale WPs have demonstrated the filling technology. Added DUO₂ can be used as part of the WP wall structure. The sealed WPs are placed in the repository, and then backfill is placed between the WPs and the tunnel wall.

For repository applications, DUO₂ is the preferred form DU. In addition to the advantages of DU in the chemical form of DUO₂, as described below, there are three other considerations. First, anything added to a repository must not compromise its performance. SNF is primarily UO₂; thus, everything in the repository is designed to be compatible with UO₂. This is not true of many other chemical forms of DU. Second, the massive studies of the behavior of SNF UO₂ in a repository environment are applicable to DUO₂ repository studies. Third, DU oxides are a preferred form of uranium if the uranium is to be disposed of.
REPOSITORY BENEFITS

There are several potential benefits to the repository in using DUO₂ as a fill material.

Criticality Control

The DU minimizes the potential for nuclear criticality. The average fissile content of light-water reactor (LWR) SNF is somewhat <1.6 wt % ²³⁵U equivalent. This assumes that the plutonium is equivalent to ²³⁵U. Assuming that 65 vol % of the void space is filled with solid DUO₂ and the remaining 35 vol % is composed of the spaces between individual particulates, a WP can accept ~3.5 t of DU per ton of uranium in the SNF. If the DU has an assay of 0.2 wt % ²³⁵U in ²³⁸U, the average fissile content of the WP with DUO₂ fill will become ~0.5 wt % ²³⁵U equivalent. If significant mixing of the depleted and SNF uranium occurs as the WP contents degrade, this low fissile assay would eliminate the potential for nuclear criticality.
Reduced Radionuclide Repository Release Rate

The goal of a geological repository is to contain radionuclides until the most hazardous ones decay to nonradioactive isotopes. The dominant failure mode of a repository is WP and SNF failure, which would then be followed by the dissolution of SNF radionuclides in groundwater and the ensuing movement of the groundwater to the accessible environment. The radionuclides are primarily incorporated into the SNF UO$_2$ pellets and cannot be released until the SNF UO$_2$ degrades. The DUO$_2$ fill material, which is in the same chemical form as is the uranium in the SNF, acts as a sacrificial material to delay the disintegration of the SNF UO$_2$. Because the DUO$_2$ is in particulate form and the SNF UO$_2$ is partly protected by the fuel pin clad, the DUO$_2$ should preferentially react with groundwater. There are four radionuclide isolation mechanisms.

1. **Chemically reducing conditions.** Under oxidizing conditions, SNF UO$_2$ reacts with oxygen in air and groundwater to form U$_3$O$_8$ and/or UO$_3$(\timesH$_2$O). The oxidation process releases many radionuclides to the groundwater. Under chemically reducing conditions, SNF UO$_2$ is thermodynamically stable and the radionuclides are trapped in the UO$_2$ matrix. The DUO$_2$ particulates preferentially react with oxygen in air and groundwater. Removal of the oxygen in the WP creates chemically reducing conditions for extended times.

2. **Reduction of groundwater flow.** The oxidation of UO$_2$ to U$_3$O$_8$, as described above, results in a 36 vol % expansion. This swelling fills inter-particulate void spaces and reduces the groundwater flow through the WP. Once a low-permeability zone is created, the water is expected to flow around the WP—not through it.

3. **Saturation of the WP water with uranium.** The DU saturates water entering a failed WP with DU. This reduces dissolution of SNF uranium with the accompanying reduction in release of hazardous radionuclides.

4. **Removal of radionuclides from groundwater.** The fill provides (1) filtering to slow the escape of radionuclide colloids from the SNF and (2) absorption of selected radionuclides from the groundwater.

Based on the known behavior of natural uranium ore deposits, the use of DUO$_2$ has the potential to improve WP performance by several orders of magnitude. Field studies show that parts of natural uranium ore bodies have remained intact with oxidizing groundwater conditions nearby for geological periods of time. The outer parts of the deposits protect the masses of UO$_2$ inside the deposits by the mechanisms described earlier. Such natural analogs indicate the potential for excellent waste isolation using DUO$_2$ fill. There are significant uncertainties to be addressed.

Radiation Shielding

DU can be used to reduce the radiation levels from the WP. In a repository environment, there are two different radiation shielding options.
• Improve repository performance. High radiation fields can react with water and rock external to the WP to produce chemical species that degrade the WP and accelerate radionuclide migration. As a consequence, typical WPs contain some shielding to minimize these effects. This shielding is not sufficient such as to allow contact-handling of the WP.

• Simplify operations. The WP can contain sufficient shielding such as to allow contact-handling of the WP. This simplifies interim storage of WP until underground placement and simplifies underground operations.

DISPOSAL OF EXCESS DU

DU is a byproduct of the production of enriched uranium for commercial power reactors and defense applications. Worldwide, about 47,000 t are produced annually. Currently, DU consumption is at somewhat <1,000 t/year. About one-million metric tons are in storage with no identified uses. About 40% of that inventory is in the United States.

Most of the DU from the commercial nuclear power industry is from the manufacturing of LWR fuel. Natural uranium with a 235U content of 0.711 wt % is separated into a DU fraction and an enriched uranium fraction. The enriched uranium (typically 3–5% 235U) is fabricated into fuel. Table I shows the quantities of DU produced per ton of enriched uranium fuel for different product and DU assays. Typically, 4 to 6 t of DU with a fissile content of 0.20–0.35% 235U are produced per ton of enriched uranium nuclear fuel. The DU 235U assay depends upon the price of uranium, the price of enrichment services, and other factors.

<table>
<thead>
<tr>
<th>DU assay (wt % of 235U)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.110</td>
<td>3.746</td>
<td>5.383</td>
<td>7.020</td>
</tr>
<tr>
<td>0.2</td>
<td>2.523</td>
<td>4.479</td>
<td>6.436</td>
<td>8.393</td>
</tr>
<tr>
<td>0.3</td>
<td>3.136</td>
<td>5.569</td>
<td>8.002</td>
<td>10.436</td>
</tr>
<tr>
<td>0.4</td>
<td>4.145</td>
<td>7.360</td>
<td>10.576</td>
<td>13.791</td>
</tr>
</tbody>
</table>

Table I. Ratio of DU produced per unit of enriched uranium produced
As a method of disposal, the beneficial use of DU in the repository has several advantages.

- **Meets disposal requirements.** Various facilities have been evaluated3-5 for the disposal of DU. The assessments indicate that if DU is considered a waste, the proposed YM repository would meet all requirements for disposal4-5. Repository beneficial use of DU is consistent with disposal requirements.

- **Total use of DU.** This application can beneficially use some or all the DU, depending upon the WP design that is selected.

- **No recycle issues.** DUO\textsubscript{2} fill is a consumptive end use of DU that avoids potential end-of-product-life disposal issues in a changing regulatory climate.

- **Consistent nuclear futures.** From a long-term perspective, the world will either develop new energy sources (e.g., fusion) or deploy breeder reactors. If breeder reactors are fully deployed, there will ultimately be no disposal of SNF or DU. The SNF will be processed to obtain fissile material for the breeder reactors, and the DU will be used as a fertile material. If the DU is with the SNF, both can be recovered simultaneously—if needed. If breeder reactors are not deployed, it will be necessary to dispose of the SNF and DU.

Technical characteristics of this system support this approach. First, WPs are designed to last thousands of years and thus allow simplified recovery for similar periods of time. Second, Canadian experiments on non-DUO\textsubscript{2} fill indicate that fill materials can be separated from the SNF without serious damage to the SNF (Forsberg 1997). SNF and DUO\textsubscript{2} are separable.

WP DESIGNS

Based on the functional uses of DUO\textsubscript{2}, several preconceptual WP designs have been developed. These designs are to (1) define options and (2) determine how much DU could be reasonably consumed by this application.

The YM repository will use several types of WPs. The most common WP6 is designed for 21 pressurized-water reactor (PWR) fuel assemblies (Fig. 2) and is used as a starting point for the concepts described herein. The WP capacity is limited by the maximum allowable decay heat per package—not mass. If the decay heat is excessive, the resulting higher temperatures might degrade repository performance. A heavier WP with DUO\textsubscript{2} fill could be deployed. This WP with SNF has a gross weight of 42.28 t. The repository is currently planning to accept WPs with gross weights up to -75 t.

The WP is a stainless-steel cylinder with an internal diameter of 142.4 cm and an internal length of 458.5 cm. The 5-cm-thick cylinder is covered with a 2-cm corrosion-resistant layer of C-22, a high-nickel alloy. Inside the cylindrical WP body, an egg-crate structure (called a basket) is used to hold the SNF in place. The walls that make up the basket contain multiple layers: (1) carbon steel for structural strength, (2) aluminum plates to conduct heat from the SNF to the cylinder wall, and (3) neutron absorbers to prevent nuclear criticality.
The cylindrical inside volume of the WP is 7.302 m³. The basket solid volume is 1.119 m³; thus, the WP void space is 6.183 m³. This void space is divided between the 21 slots for SNF assemblies (4.935 m³) and the edge spaces between the square grid structure and the round WP (1.248 m³). Each basket slot has a volume of 0.235 m³—with the 21 slots having a total void volume of 4.935 m³. Each slot (22.64 cm × 22.64 cm × 458.5 cm) is somewhat larger than the SNF assembly to allow for clearance during the loading of SNF. The slot length allows the WP to be used for SNF assemblies with different heights.

A typical Westinghouse, 17 ×17 pin, SNF assembly has an exterior volume (21.4 cm × 21.4 cm × 409.9 cm) of 0.188 m³, but the solid displacement volume is only 0.07332 m³; thus, the total solid displacement volume of the 21 fuel assemblies is 1.540 m³. A fuel assembly is mostly empty space for water-coolant flow in the reactor; consequently, the fuel assembly void fraction is 61 vol %. This particular example of a fuel assembly has a weight of 611 kg and contains 401 kg of uranium. The loaded WP will thus contain 8.42 t of uranium in 21 fuel assemblies.
Several preconceptual designs (Table II) were developed to examine the placement of DUO₂ in the WP. No structural analysis and only limited thermal analysis has been completed. For these beneficial uses, the closer the DUO₂ is to the WP, the more effective it is. Consequently, the analysis starts with DUO₂ fill only in each SNF basket slot. Each additional design concept adds DUO₂ further out from the SNF.

<table>
<thead>
<tr>
<th>Case</th>
<th>WP gross wt (t)</th>
<th>DUO₂/WP (t)</th>
<th>Ratio DU to SNF (U metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing WP</td>
<td>42.28</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Minimum use</td>
<td>68.97</td>
<td>24.19</td>
<td>2.53</td>
</tr>
<tr>
<td>Full void utilization</td>
<td>75.36</td>
<td>33.08</td>
<td>3.46</td>
</tr>
<tr>
<td>Cermet WP (self-shielding)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 t</td>
<td>100.00</td>
<td>49.10</td>
<td>5.14</td>
</tr>
<tr>
<td>125 t</td>
<td>125.00</td>
<td>65.38</td>
<td>6.84</td>
</tr>
<tr>
<td>DUO₂ WP (self-shielding)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 t</td>
<td>100.00</td>
<td>55.33</td>
<td>5.79</td>
</tr>
<tr>
<td>125 t</td>
<td>125.00</td>
<td>77.91</td>
<td>8.15</td>
</tr>
</tbody>
</table>

*The SNF in the WP contains 8.42 t initial heavy metal. The conversion factor for DUO₂ to DU is 0.881.

Minimum Use

To obtain the repository benefits, the minimum required usage of DUO₂ is to fill the WP basket slots. This results in DUO₂ particulates in (1) the coolant channels of the SNF, (2) the spaces between the SNF assembly and the slot walls, and (3) the spaces above and below the SNF assembly. The available volume (3.395 m³) is the volume of the 21 WP slots (4.935 m³) minus the solid displacement volume of the 21 SNF assemblies (1.540 m³). Given the density of UO₂ (10.96 g/cm³) and a typical fill efficiency (65 vol %), the WP will accept 24.19 t of DUO₂. A total of 2.53 t of DU are disposed of per metric ton of SNF on a uranium basis.

For the fill to perform satisfactorily, another fill material is needed for the 1.248 m³ of void spaces between the square grid structure and the basket structure. This is required so that DUO₂ does not escape from its position next to the SNF and move to these void spaces as the WP degrades. It is assumed that a particulate fill with a density of 2 g/cm³ is used to eliminate this problem. This adds 2.53 t of material. The total WP weight becomes 68.97 t.
Within the constraints of obtaining performance benefits from using DUO₂, this option maintains the same exterior geometric dimensions while minimizing WP weight.

Full Void Use

This option is identical to the previous option except that all void spaces in the WP are filled with DUO₂. In addition to filling the basket slots, the edge spaces between the square grid structure and the cylindrical WP body are also filled with DUO₂. It maximizes DUO₂ usage within the existing WP geometric envelope. The total void volume of this edge space is 1.248 m³. It allows the addition of 8.89 t of DUO₂ per WP. A total of 3.46 t of DU are disposed of per ton of SNF on a uranium-metal basis.

Cermet WP

The cermet WP adds a layer of cermet between the basket structure and the exterior WP shell. The WP shell diameter must be expanded to make room for the cermet. The WP shell thickness is assumed to be unchanged. As in the previous case, all void spaces in the basket are filled with DUO₂. The cermet consists of DUO₂ particulates (D= 10.96 g/cm³) embedded in a steel (D= 7.86 g/cm³) matrix. The cermet is assumed to contain 65 vol % UO₂ and 35 vol % steel. Its density would be 9.88 g/cm³. The ratio of DUO₂ to steel depends upon the design objectives. This high loading is chosen to maximize DUO₂ usage. Lower DUO₂ loadings will increase the strength of the cermet.

Two WP gross weight limits are considered: 100 and 125 t. These weight limits are chosen because there is a large experience base in handling SNF shipping casks of this size. In addition, there is significant experience in handling 100-t packages in some underground disposal facilities such as the Swedish Final Repository for reactor waste facility. There is little experience above these weight limits.

With the 100-t WP, the cermet provides sufficient radiation shielding such as to make the WP a self-shielded WP—except for neutron shielding. An earlier study examined a transport-disposal package for 21 PWR SNF assemblies using a different DU fill. One observation from that study was that for large WPs, the gross weights of optimized self-shielded WPs—with and without DU fill—are close to each other. The use of fill adds weight but reduces the required shield thickness in the WP walls.

With a 100-t weight limit, 24.67 t (100 t - 75.36 t) of material can be added to the WP that already contains DUO₂ fill in all void spaces. This added weight is divided into (a) 22.22 t of cermet (a 9.5-cm-thick layer around the basket structure that contains 16.02 t of UO₂ and 6.20 t of steel) and (b) 2.42 t of additional stainless steel and C-22. Because the cermet layer increases the diameter and height of the WP, additional metal is required for the exterior WP metal shell. A total of 5.14 t of DU are disposed of per ton of SNF on a uranium-metal basis.
With a 125 t weight limit, 49.64 t (125 t - 75.36 t) of material can be added to a WP that already contains DUO₂ fill in all void spaces. This added weight is divided into (a) 44.78 t of cermet (a 19.12-cm-thick layer around the basket structure that contains 32.30 t UO₂ and 12.48 t of steel) and (b) 4.86 t of additional stainless steel and C-22. Because the cermet layer increases the diameter and height of the WP, additional metal is required for the exterior WP metal shell. A total of 6.84 t of DU are disposed of per ton of SNF on a uranium metal basis.

The design herein adds the cermet to an existing WP. There are also options to use the cermet to replace the existing WP structural components. This could include both the WP and the basket structure. Cermets have significant structural strength.

DUO₂ WP

This WP is similar to the cermet WP except that the cermet is replaced by a thick layer of DUO₂ blocks. Compared to the cermet options, the blocks allow higher DUO₂ loadings—the metal component of the cermet is replaced by DUO₂. Because of the unavoidable porosity in UO₂ blocks and spaces between ceramic blocks, an average DUO₂ density (10 g/cm³) somewhat less than a typical fuel pellet is assumed. There are uncertainties about whether solid DUO₂ could be used as a shield material. The issue of cracking must be addressed. The DUO₂ does not add strength to the WP; thus, there are also structural issues that may require added steel and less DUO₂.

With a 100-t weight limit, an additional 24.64 t of material can be added to a loaded WP that already contains DUO₂ fill in all void spaces. This added weight is divided into (a) 22.25 t of DUO₂ (a 9.4-cm-thick layer around the basket structure) and (b) 2.39 t of additional stainless steel and C-22. Because the DUO₂ layer increases the diameter and height of the WP, additional metal is required for the exterior WP metal shell. A total of 5.79 t of DU are disposed of per ton of SNF on a uranium metal basis.

With a 125-t weight limit, an additional 49.64 t of material can be added to a loaded WP that already contains DO₂ fill in all void spaces. This added weight is divided into (a) 44.83 t of DUO₂ (a 18.9-cm-thick layer around the basket structure) and (b) 4.81 t of additional stainless steel and C-22. Because the DUO₂ layer increases the diameter and height of the WP, additional metal is required for the exterior WP metal shell. A total of 8.15 t of DU are disposed of per ton of SNF on a uranium metal basis.

CONSUMPTION

The DUO₂ consumption for various WP designs can be compared to existing and future DU inventories. For representative LWR fuel cycles, about half the existing and future DU inventory can be used as a fill material in the void spaces in proposed WPs. All of the inventory can be used if added DUO₂ is used in the WP walls.
CONCLUSIONS

DUO₂, as a fill material in repository SNF WPs, may significantly improve the performance of the repository. Beyond repository improvements, this use of DUO₂ is a method for DU disposition that is capable of using the entire existing and future inventory of DU. There remain many technical and economic uncertainties. Research is continuing to reduce these uncertainties.

ACKNOWLEDGMENTS

I would like to thank Steve Storch of Oak Ridge National Laboratory for various calculations.

REFERENCES

