How (small) unmanned aerial vehicles can provide data at appropriate spatial, temporal, and spectral scales to monitor fine-scale ecological patterns and processes.

Benjamin W. Heumann, Ph.D
Center for Geographic Information Science, Central Michigan University
benjamin.heumann@cmich.edu
(989) 954-2114

2014 UAS Workshop Argonne National Labs
CMU Center for GIScience

- Research and Service Center
- Expertise:
 - UAS Remote Sensing
 - GeoSpatial Modeling
 - Cartography/Custom Mapping, GeoDatabase Development
 - Work closely with Institute for Great Lakes Research at CMU
- Clients:
 - Academic
 - Government
 - Non-Profit
 - Corporate
Outline

- Why sUAS? A Personal Perspective
- The Three Scales in Remote Sensing
 - Temporal
 - Spatial
 - Spectral
- UAS Remote Sensing Opportunities
- Conclusions
“Explain the impact of scale in remote sensing” – a doctoral comprehensive exam question
Why UAS?

(B) Worldview-2

<table>
<thead>
<tr>
<th></th>
<th>AC</th>
<th>MZ</th>
<th>OV</th>
<th>BW</th>
<th>RM</th>
<th>WM</th>
<th>BM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td></td>
<td>1.963</td>
<td>1.647</td>
<td>1.698</td>
<td>1.820</td>
<td>1.498</td>
<td>1.785</td>
</tr>
<tr>
<td>MZ</td>
<td>1.963</td>
<td></td>
<td>1.861</td>
<td>1.925</td>
<td>1.900</td>
<td>1.943</td>
<td>1.647</td>
</tr>
<tr>
<td>OV</td>
<td>1.647</td>
<td>1.861</td>
<td></td>
<td>1.532</td>
<td>1.622</td>
<td>1.584</td>
<td>1.381</td>
</tr>
<tr>
<td>BW</td>
<td>1.698</td>
<td>1.925</td>
<td>1.532</td>
<td></td>
<td>1.617</td>
<td>1.336</td>
<td>1.634</td>
</tr>
<tr>
<td>RM</td>
<td>1.820</td>
<td>1.900</td>
<td>1.622</td>
<td>1.617</td>
<td></td>
<td>0.866</td>
<td>1.226</td>
</tr>
<tr>
<td>WM</td>
<td>1.498</td>
<td>1.943</td>
<td>1.584</td>
<td>1.336</td>
<td>0.866</td>
<td></td>
<td>1.540</td>
</tr>
<tr>
<td>BM</td>
<td>1.785</td>
<td>1.647</td>
<td>1.381</td>
<td>1.634</td>
<td>1.226</td>
<td>1.540</td>
<td></td>
</tr>
</tbody>
</table>
Scales of Remote Sensing

Scales of Detection: Extent and Resolution

- Temporal Scale
 - Revisit Time
 - Timing of Phenomenon

- Spatial Scale
 - Areal Extent
 - Pixel Size (Resolution)

- Spectral Scale
 - Color vs. Wavelength
Photography vs. Spectroscopy

Spectroscopy
- How light interacts with matter
- Consistent, Robust, scientific measurement
- % Reflectance or Radiance – watts/sq m.
- Quantitative Analysis
- Requires advanced training and equipment

Photography
- Picture (can be NIR)
- Difficult to directly compare images
- CANNOT easily use vegetation indices or other quantitative analysis
- Existing expertise and equipment

Jones and Vaughan, 2010
Phenology

Canopy

Nutrients*

Structure / Biomass

Fire

10cm

2m

30m

250m

1km

50km

200km

500km

2000km

Spatial Resolution

Spatial Extent

Temporal Resolution

After Chambers et al. 2007

MODIS

Landsat / HYPERION*

Quickbird / Worldview-2

Airborne*

Small Unmanned*
Non-Imaging remote sensing

- sUAS can be a tool to collect samples in difficult terrain
- Example: Hyperspectral measurements of plants in wetlands using handheld spectroradiometer
 - **On the ground**
 - Sensitivity of equipment
 - Travel Time
 - Navigation Issues
 - Disturbance of field site
 - **In the air**
 - Predetermined sampling
 - Equipment is safe
 - Sampling is quick

Non-imaging sensors often less than 1/10th cost of imaging sensors
Opportunities for UAS Remote Sensing: Spatial

- Object of interest < pixel size
- Satellite & Manned Aircraft: Forests, Agriculture, Shrublands
- What about herbaceous vegetation?
 - Tundra / Alpine
 - Grasslands
 - Wetlands
 - Peatlands
 - Marshes

Photo credit: Smith, R.W.

Dr. Benjamin Heumann, Central Michigan University
Opportunities for UAS Remote Sensing: Spatial

- Fine-scale Patterns and Variability
 - Field Plots
 - Farm Field
 - Flux Towers

Barr et al. 2010
Opportunities for UAS Remote Sensing: Temporal

- Phenology
 - Leaf burst
 - Leaf senescence
 - Flowering
 - Fruiting
 - Insect Hatch

- Flexible and Rapid Deployment
 - Plant Pathogens
 - Invasive Species
 - Drought, Floods, Extreme Events

Fine Spatial Scale Phenology:
- Detection of individual flowers, leaves, fruits

7/29/2014
Dr. Benjamin Heumann, Central Michigan University
Opportunities for UAS Remote Sensing: Precision Agriculture

Bratney and Whelan, 2001

Zarco-Tejada et al. 2008
Opportunities for UAS Remote Sensing: Multi-Dimensional Analysis

- Spectral-Temporal Signatures
 - Repeated image acquisition over the growing season
- Spectral-Spatial Classification
 - Object-based Image Analysis
- 4-D Analysis (X,Y,Time,Spectral)
- Scaling with larger-footprint imagery
 - Local → Regional → Global
 - Integrate UAS remote sensing with other platforms
Challenges for UAS Remote Sensing: Undiscovered Country

- New Methods and Platforms \rightarrow Research Opportunity
- BUT \rightarrow can be inconsistent with long-established protocols
- More proof-of-concept required for:
 - Sensors
 - Sensor Integration
 - Data Quality and Accuracy
Challenges for UAS Remote Sensing: Sensor Integration

Source: Leptron Industrial Robotic Helicopters

Source: Headwall Phonics
Challenges for UAS Remote Sensing: Platform Stability

- Airborne Platforms are constantly adjusting Pitch, Roll, Yaw

- For 2-D imagers, post-processing can adjust.

- For 1-D imagers (most hyperspectral), post-processing is not possible and requires complicated corrections.

- Vibration isolation is also critical

Jones and Vaughan, 2010
Challenges for UAS Remote Sensing: Sensor Calibration and Processing

Accurate Reflectance Measurements Require:

- In-Situ Calibration with multiple Calibration Tiles

- AND/OR

- Continuous Readings of Incoming Radiation (variable light conditions)

Jones and Vaughan, 2010
Current UAS Research Projects at CMU

Mapping Wetland Biodiversity
Location: Washtenaw County, MI

Mapping Pitcher’s Thistle
Location: Wilderness State Park, MI

Collaborators: Chicago Botanic Gardens, East Carolina University, Charleston College

Funded in-part by USFWS
Conclusions

- Remote sensing requires careful consideration of spatial, temporal, and spectral scales.

- UAS as a new platform provides new opportunities for flexible deployment (temporal scale) and low altitude image collection (fine-spatial scale).

- Type of spectral data has considerable tradeoffs between potential benefits and costs/efforts to achieve results.
Thank You – Questions?

Benjamin W. Heumann, Ph.D
Center for Geographic Information Science, Central Michigan University
benjamin.heumann@cmich.edu